Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 621(7978): 289-294, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704764

RESUMEN

Reaction rates at spatially heterogeneous, unstable interfaces are notoriously difficult to quantify, yet are essential in engineering many chemical systems, such as batteries1 and electrocatalysts2. Experimental characterizations of such materials by operando microscopy produce rich image datasets3-6, but data-driven methods to learn physics from these images are still lacking because of the complex coupling of reaction kinetics, surface chemistry and phase separation7. Here we show that heterogeneous reaction kinetics can be learned from in situ scanning transmission X-ray microscopy (STXM) images of carbon-coated lithium iron phosphate (LFP) nanoparticles. Combining a large dataset of STXM images with a thermodynamically consistent electrochemical phase-field model, partial differential equation (PDE)-constrained optimization and uncertainty quantification, we extract the free-energy landscape and reaction kinetics and verify their consistency with theoretical models. We also simultaneously learn the spatial heterogeneity of the reaction rate, which closely matches the carbon-coating thickness profiles obtained through Auger electron microscopy (AEM). Across 180,000 image pixels, the mean discrepancy with the learned model is remarkably small (<7%) and comparable with experimental noise. Our results open the possibility of learning nonequilibrium material properties beyond the reach of traditional experimental methods and offer a new non-destructive technique for characterizing and optimizing heterogeneous reactive surfaces.

2.
Phys Rev Lett ; 130(25): 258402, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37418715

RESUMEN

Spectral mode representations play an essential role in various areas of physics, from quantum mechanics to fluid turbulence, but they are not yet extensively used to characterize and describe the behavioral dynamics of living systems. Here, we show that mode-based linear models inferred from experimental live-imaging data can provide an accurate low-dimensional description of undulatory locomotion in worms, centipedes, robots, and snakes. By incorporating physical symmetries and known biological constraints into the dynamical model, we find that the shape dynamics are generically governed by Schrödinger equations in mode space. The eigenstates of the effective biophysical Hamiltonians and their adiabatic variations enable the efficient classification and differentiation of locomotion behaviors in natural, simulated, and robotic organisms using Grassmann distances and Berry phases. While our analysis focuses on a widely studied class of biophysical locomotion phenomena, the underlying approach generalizes to other physical or living systems that permit a mode representation subject to geometric shape constraints.


Asunto(s)
Robótica , Locomoción
3.
J Chem Phys ; 158(24)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37352420

RESUMEN

Understanding the charge transfer processes at solid oxide fuel cell (SOFC) electrodes is critical to designing more efficient and robust materials. Activation losses at SOFC electrodes have been widely attributed to the ambipolar migration of charges at the mixed ionic-electronic conductor-gas interface. Empirical Butler-Volmer kinetics based on the transition state theory is often used to model the current-voltage relationship, where charged particles transfer classically over an energy barrier. However, the hydrogen oxidation/water electrolysis reaction H2(g) + O2- ⇌ H2O(g) + 2e- must be modeled through concerted electron and proton tunneling events, where we unify the theory of the electrostatic surface potential with proton-coupled electron transfer kinetics. We derive a framework for the reaction rate that depends on the electrostatic surface potential, adsorbate dipole moment, the electronic structure of the electron donor/acceptor, and vibronic states of the hydrogen species. This theory was used to study the current-voltage characteristics of the Ni/gadolinium-doped ceria electrode in H2/H2O(g), where we find excellent validation of this novel model. These results yield the first reported quantification of the solvent reorganization energy for an SOFC material and suggest that the three-phase boundary mechanism is the dominant pathway for charge transfer at cermet electrodes.


Asunto(s)
Óxidos , Protones , Óxidos/química , Electrones , Hidrógeno/química , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...